This Canon Patent Puts A Vacuum Cleaner Into A Lens To Keep The Sensor Clean

Canon Patent

Sounds weird? Well, it’s an actual Canon patent application.

Canon patent application 2019-191432 (Japan) discusses a lens design that incorporates the basic principle of a standard vacuum cleaner.

The specially designed lens has a an air flow circuit, as you can easily see in the image on top. Air is pulled in from the outside, hits the sensor, gets sucked away and flows out. Basically, this lens creates a negative pressure around the image sensor, so that dust and other particles don’t stick to the sensor. Quoting the patent literature:

An air intake channel for sucking air from the outside into the interior of the imaging device (200) by the pressure difference generated by the air flow generating means.

canon patent

Sound pretty awesome, and complicated too. From the patent abstract:

[Problem] To provide a dust removing device capable of easily removing dust adhering to an imaging element inside a camera body while confirming an actual influence degree.

[Means for solving] An outer housing having an engaging part for engaging with a lens mount detachably holding an imaging lens, and an inner side of the outer housing ;A communication unit for electrically connecting an inner housing and an imaging device to be arranged, a 1 passage penetrating into the body of the imaging device formed between the outer housing and the inner housing, a 2 passage penetrating into the body of the imaging device formed inside the inner case, and an engaging portion ;The device is provided with at least one optical member arranged on a photographing optical axis when engaged with an imaging device and on the inside of the inner case, an aperture mechanism, and an empty flow generating means arranged at a position not to erode a photographing light flux of the optical member in the 1 passage. A part of the 2 flow path is formed by the periphery of the optical member and an opening of the throttle mechanism

Don’t expect this invention to g to production anytime soon, if ever.

More Canon patent applications are listed here. Some particularly interesting patent applications we think might get into production are these:

[via Canon News]

This Image Sensor Makes It Virtually Impossible To Blow Highlights

Image Sensor

Researchers at the German Institut für Mikroelektronik Stuttgart have developed an image sensor that makes it almost impossible to blow highlights with.

What this image sensor does, is using “self resetting pixels“, i.e. pixels that don’t clip when they get saturated but instead starts over and counts the times it has started over. From the research paper’s abstract:

Conventional CMOS image sensors with a linear transfer characteristic only have a limited dynamic range (DR) of about 60–70 dB. To extend the dynamic range considerably, the already successfully demonstrated concept of a linear self-reset pixel was employed in this work. With the self-reset concept the limit of the maximum analyzable photo generated charge (Qmax) during the exposure time is extended to a multiple of the saturation charge of the photo diode (Qsat) by asynchronous self-resets of the photo diode. Additionally, the remaining charge at the end of the exposure time is evaluated to increase the resolution of the opto-electronic conversion. Thus we achieved pixels with a DR of more than 120 dB combined with an improved low light sensitivity using a pinned photodiode.

In other words: you don’t have to worry about your exposure in order to save highlights in your image. Instead, you can set the best exposure for your subject and safely snap knowing that no highlights will be blown out.

This image sensor is a prototype and likely far from going into production. Never the less, it’s a technological innovation that sooner or later will be featured on image sensors.

The full paper “Realization and opto-electronic Characterization of linear Self-Reset Pixel Cells for a high dynamic CMOS Image Sensor” by Stefan Hirsch, Markus Strobel, Wolfram Klingler, Jan Dirk Schulze Spüntrup, Zili Yu, and Joachim N. Burghartz, is available here.

Let’s hope it’s something Canon will research too.

[via Image Sensors World]

Preliminary, Non Scientific Tests Suggest Canon’s New 32MP Sensor Improves On Dynamic Range

Canon Eos 90d Canon Aps-c Firmware Dynamic Range

It seems Canon’s claim they managed to improve dynamic range while raising the resolution of their latest APS-C sensor is not wrong.

Fred Miranda forum user cgarcia did some tests with sample images from DPReview to compare dynamic range figures of the new Canon EOS 90D (32MP) and the Canon EOS 80D (24MP).

Canon EOS 90D – ISO 100:

  • DR at 32MP: 12.468
  • DR at 8MP: 13.480 (+1.012)
  • read noise: 2.80125

Canon EOS 80D – ISO 100:

  • DR at 24MP: 12.435 EV
  • DR at 8MP: 13.2343 (+0.7993)
  • read noise: 2.86601

As you can see, there is a small improvement over the EOS 80D.

cgarcia also learned that the dynamic range improves much more at higher ISO settings (compared to the EOS 80D). The image below shows that a higher ISO settings the DR of the EOS 90D improves continously.

Dynamic range comparison between Canon EOS 90D and Canon EOS 80D at different ISO settings (image © cgarcia)

These figures look pretty good. However, keep in mind this is a non scientific test. To be sure we have to wait for further analysis of the performance of Canon’s new 32MP APS-C sensor. Never the less, it appears Canon managed to deliver a quite amazing image sensor.

Canon’s new 32MP APS-C sensor is featured on the brand new Canon EOS 90D and Canon EOS M6 Mark II.

Canon EOS 90D:

America: B&H Photo, Amazon USA, Amazon Canada, Canon Canada, Canon USA
Europe & UK: Amazon DE, Amazon UK, Amazon IT, Canon IT, WEX Photographic, Canon FR, Canon UK, Canon DE

Canon EOS M6 Mark II:

America: B&H Photo, Amazon USA, Amazon Canada, Canon Canada, Canon USA
Europe & UK: Amazon DE, Amazon UK, Amazon IT, Canon IT, WEX Photographic, Canon FR, Canon UK, Canon DE

Canon Develops A New CMOS Sensor With High Dynamic Range and Able To Shoot Images In Harsh Settings

Ibis Canon Rumors Canon Full Frame Mirrorless Canon PowerShot G7 X Canon Eos 90d Coronavirus

Canon press release:

Canon Announces Development of New CMOS Sensor with High Dynamic Range and Ability to Capture Images Under Harsh Conditions

MELVILLE, NY, June 20, 2019 – The high demands of complex lighting and harsh environments require sensors capable of delivering high-dynamic range (HDR) and high-image quality in adverse temperature conditions. To answer this application need, Canon U.S.A. Inc., a leader in digital imaging solutions, is pleased to announce that its parent company Canon Inc. is pursuing development of the 3U3MRXSAAC, a 2.8-megapixel, 1/2.32-inch CMOS sensor ideal for HDR imaging.

“As Canon evolves in the sensor market, we are dedicated to utilizing our expertise to develop products built to meet current growing market trends,” said Kazuto Ogawa, president and chief operating officer, Canon U.S.A., Inc. “The 3U3MRXSAAC CMOS sensor under development reflects the continuation of our business strategy that leverages the high-quality imaging technology Canon is able to achieve.”

The 3U3MRXSAAC CMOS sensor being developed will be equipped with an HDR drive function that can achieve a wide range of 120 dB at low noise levels. This HDR function will reflect a greater ability to extract usable information even when there is a substantial difference between the lightest and darkest parts of an image. Even during normal drive operation, the sensor can achieve a dynamic range of 75 dB—greater than the sensors on many conventional digital cameras. 

Additionally, the 3U3MRXSAAC CMOS sensor will also be capable of operating in environments with extreme temperatures ranging from -40 degrees Celsius to 105 degrees Celsius. Typically, in high-temperature conditions, the increase in dark current noise (noise that occurs due to heat, even when no light reaches the sensor) can affect the quality of the image. However, the 3U3MRXSAAC CMOS sensor will be equipped with functionality that helps correct black levels (the luminance level of the darkest portion of an image) in real-time to help maintain high image quality. 

With a diagonal size of 1/2.32 inches (7.75 mm), the 3U3MRXSAAC CMOS sensor will feature approximately 2.8 million effective pixels (1936 x 1456), a pixel size of 3.2 μm x 3.2 μm and a frame rate of up to 60 fps (30 fps during HDR drive operation). The sensor will be compatible with the MIPI CSI-2 interface used by consumer-oriented cameras for a wide variety of purposes.

For more information on Canon sensors, please visit canon-cmos-sensors.com.

Industry News: Samsung Announces 64MP Smartphons Sensor With 21fps

Samsung Chip Supply

The industry is scared by the increasing popularity of smartphones, and for a good reason. The technology evolves at a fast pace.

Now Samsung announced a new, 64MP sensor for smartphones doing 21fps. You can already get smartphones with sensors around 40MP (as the excellent Huawei P30 Pro, which seems to be gold standard for smartphone photography for the time being), and it seems the next generation of smartphones might raise the resolution to 64MP. As crazy as it sounds (at least to me) this is the future, along with computational photography algorithms getting always better. Why should people buy a dedicated camera when

Samsung press release:

Samsung Electronics, a world leader in advanced semiconductor technology, today introduced two new 0.8-micrometer (μm) pixel image sensors – the 64-megapixel (Mp) Samsung ISOCELL Bright GW1 and 48Mp ISOCELL Bright GM2. With the addition, Samsung expands its 0.8μm image sensor lineup, the smallest pixel size currently available in the market, from existing 20Mp to ultra-high 64Mp resolutions.

“Over the past few years, mobile phone cameras have become the main instrument for recording and sharing our everyday moments,” said Yongin Park, executive vice president of sensor business at Samsung Electronics. “With more pixels and advanced pixel technologies, Samsung ISOCELL Bright GW1 and GM2 will bring a new level of photography to today’s sleekest mobile devices that will enhance and help change the way we record our daily lives.”

ISOCELL Bright GW1 is a 64Mp image sensor that features the highest resolution in Samsung’s 0.8μm-pixel image sensor lineup. With pixel-merging Tetracell technology** and remosaic algorithm***, GW1 can produce bright 16Mp images in low-light environments and highly-detailed 64Mp shots in brighter settings. To take pictures resembling the way the human eye perceives its surroundings in a mixed light environment, GW1 supports real-time high dynamic range (HDR) of up to 100-decibels (dB) that provides richer hues. In comparison, the dynamic range of a conventional image sensor is at around 60dB, while that of the human eye is typically considered to be around 120dB.

GW1 is equipped with a Dual Conversion Gain (DCG) that converts the received light into an electric signal according to the illumination of the environment. This allows the sensor to optimize its full well capacity (FWC), utilizing the collected light more efficiently especially in bright environments. Sharper results can be delivered through Super PD, a high-performance phase detection auto-focus technology, and full HD recording at 480 frames-per-second (fps) is supported for smooth cinematic slow motion videos.

ISOCELL Bright GM2 is a 48Mp image sensor that also adopts Tetracell technology in low-light environments and a remosaic algorithm in well-lit settings, bringing highly-detailed pictures with natural and vivid colors. GM2, like GW1, adopts DCG as well for added performance and Super PD for fast autofocus.

Samsung ISOCELL Bright GW1 and GM2 are currently sampling and are expected to be in mass production in the second half of this year.

[via Image Sensors World]

Canon Might Have a 63MP Full Frame Image Sensor On Their Agenda, Leaked Document Suggests

An apparently legit Canon document describing a full frame image sensor with a resolution of 63MP leaked over the web.

The 35MM63MXSCD named CMOS sensor has Dual Pixel AF, shoots around 5fps, and is made with a 300nm manufacturing process.

We expect Canon to announce a high resolution EOS R camera in Q4 2019. Could this be the sensor Canon will feature in their upcoming high resolution EOS R camera? Hard to say. It might be but it might also well be one of Canon’s super-specialised image sensors, maybe even a prototype that never went into production.

The sensor in the leaked document seems at first glance to be the sensor rumored for the high res EOS R model, although the latest rumor we got was talking about a 75MP sensor. We tend to believe this sensor has nothing to do with the upcoming high resolution EOS R camera.

More about Canon’s special purpose sensors can be learned here.

What is you opinion?

[via EOSHD Forum]